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Abstract
DNA microarray and gene expression problems often require a researcher to
perform clustering on their data in a bid to better understand its structure. In
cases where the number of clusters is not known, one can resort to hierarchical
clustering methods. However, there currently exist very few automated
algorithms for determining the true number of clusters in the data. We propose
two new methods (mode and maximum difference) for estimating the number of
clusters in a hierarchical clustering framework to create a fully automated
process with no human intervention. These methods are compared to the
established elbow and gap statistic algorithms using simulated datasets and
the Biobase Gene ExpressionSet. We also explore a data mixing procedure
inspired by cross validation techniques. We find that the overall performance of
the maximum difference method is comparable or greater to that of the gap
statistic in multi-cluster scenarios, and achieves that performance at a fraction
of the computational cost. This method also responds well to our mixing
procedure, which opens the door to future research. We conclude that both the
mode and maximum difference methods warrant further study related to their
mixing and cross-validation potential. We particularly recommend the use of
the maximum difference method in multi-cluster scenarios given its accuracy
and execution times, and present it as an alternative to existing algorithms.
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1 Introduction
Hierarchical clustering analysis (HCA) is an extensively studied 
field of unsupervised learning. Very useful in dimensionality 
reduction problems, we will study ways of using this clustering 
method with the aim of reducing (or removing) the need for human  
intervention.

The problem of human intervention stems from the fact that  
HCA is used when the correct number of clusters in a dataset is 
not known (otherwise we might use, for example, K-means). While 
the ability to cluster data with an unknown number of clusters is 
a powerful one, a researcher often needs to interpret the results - 
or cutoff the algorithm - to recover a meaningful cluster number. 
While our work was prompted by DNA microarray analysis and 
gene expression problems, these methods can be applied to general 
hierarchical clustering scenarios. Specifically, we analyze different 
existing automated methods for cutting off HCA and propose two 
new ones.

In Section 2 we discuss background material on HCA and the 
existing methods and in Section 3 we present some technical 
details on these methods and introduce our own. Section 4 
contains results on simulated and actual data, and Section 5 
examines data sampling procedures to improve accuracy.

2 Background
Hierarchical clustering, briefly, seeks to pair up data points that are 
most similar to one another. With the agglomerative (or bottom-up) 
approach, we begin with N data points forming singleton clusters. 
For each point, we measure the distance between it and its N − 1 
neighbors. The pair with the shortest distance between the two 
points is taken to form a new cluster. We then look at the distance 
between the N − 2 points remaining and the newly formed cluster, 

and again pair off the two points with the shortest distance (either 
adding a data point to our 2-cluster, or forming another cluster from 
two new data points). This process is repeated until there is a single 
cluster with N points (regardless of the absolute distance between 
points).

Naturally, this is a very good dimensionality reduction algorithm. 
Unfortunately, it continues until the data is flattened to 1 dimension. 
In cases where there are n ≥ 2 clusters, this is problematic.

The results of a HCA are often expressed as a dendrogram,  
a tree-like graph that contains vital information about the  
distances measured in the clustering and the pairings generated.  
An example of a dendrogram is shown in Figure 1. Briefly,  
horizontal lines denote pairings, and the height of those lines  
represent the distance that needs to be bridged in order to cluster  
the points together. That is, the smaller the height (or jump) of a 
pairing, the closer the points were to begin with.

Our goal is to find a way to stop the algorithm from arbitrarily 
flattening our data to 1 dimension. If another run would cluster 
two very dissimilar points together, it likely isn’t a scientifically  
sound choice. In that case we would stop the algorithm and keep  
the cluster structure built up to that point.

2.1 Existing alternatives
The problem of cutting off a dendrogram is one that researchers 
encounter often, but there are no reliable automated methods for 
doing so 1. Often, the gap statistic is the only proposed automated 
method, as in 1. As such, many researchers inspect the finished 
dendrogram and manually select a cutoff point, based on their own 
judgment. Apart from the obviously slow nature of this exercise, 
there is also the question of human error to consider - as well 

Figure 1. Example dendrogram from 26 data points.
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as bias. In cases where the cutoff is not easily determined, two 
different researchers may arrive at different conclusions as to 
the correct number of clusters - which could both be incorrect. 
Algorithmic approaches aim to eliminate this, and range from 
simpler methods to more complex ones. An excellent summary of 
existing methods is given in 2, which is referenced in 3.

The latter, more importantly, develops the gap statistic. We  
present the technical aspects in Section 3, but quickly discuss 
some properties here. First, the gap statistic is one of few methods 
that is capable of accurately estimating single clusters (in the 
case where all our data belongs to one cluster), a situation often 
undefined for other methods1. While it is rather precise overall, it 
requires the use of a “reference distribution”, which must be chosen 
by the researcher. In 3, the authors put forward that the uniform  
distribution is in fact the best choice for unimodal distributions. 
A powerful result, it is still limited in other cases, and thus many 
researchers still take the manual approach. However, it generally 
outperforms other complex methods (see 3) and, as such, we focus 
on the gap statistic.

On the other side of the complexity spectrum, are variants of 
the “elbow method”. The elbow method explains the variance in 
data as a function of the number of clusters assigned. The more  
clusters assigned, the more variance that can be explained.  
However, as we add more clusters we begin to get diminishing 
returns and each new cluster explains less and less of the 
variance - we choose the point where returns begin to diminish 
as the number of clusters. A variant of this method, often applied 
to dendrograms, looks for the largest acceleration of distance  
growth4. While this method is very flexible, it cannot handle the 
single-cluster case4.

3 Approaches
We look at both the elbow method variant and the gap statistic, 
as well as our own 2 methods. While there are many other 
methods to compare to, the gap statistic is quite representative of 
a successful (if more complex) solution - and tends to outperform 
other known methods3. The elbow method is representative of 
the more accepted simple approaches. In all tests considered in 
this paper, an agglomerative hierarchy, with average linkage and 
euclidean distance measure is used.

3.1 Gap statistic
The gap statistic is constructed from the within-cluster distances, 
and comparing their sum to the expected value under a null distribu-
tion. Specifically, as given in 3, for r clusters C

r
 

	 	 ( ) = [log ] – log*
n n k kGap k E W W 		 	 					(1)
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That is, we are looking at the sum of the within-cluster distances d, 
across all r clusters C

r
. Computationally, we estimate the gap 

statistic and find the number of clusters to be (as per 3) 

 1
ˆ smallest | ( ) ( 1)G kk k Gap k Gap k s += ≥ + −        (3)

where s
k
 is the standard error from the estimation of Gap(k). As 

mentioned3, considers both a uniform distribution approach and 
a principal component construction. In many cases, the uniform 
distribution performs better, and this is used here.

3.2 Elbow method
This variant of the elbow method, which looks at the accelera-
tion, is seen in 4. A straightforward method, we simply look at the 
acceleration in jump sizes. So given the set of distances from our 
clustering {d

1, … , dN
}, the acceleration can be written as 

	 								 3 2 1 1 2{ 2 , , 2 }.N N Nd d d d d d− −− − − − 	 				(4)

We choose our number of clusters as the jump with the highest 
acceleration, giving us 

       { }1 2
[3, ]

ˆ 2 arg max 2 .E i i i
i N

k N d d d− −
∈

= + − − −        (5)

While very simple and very fast, this method will never find the 
endpoints, ie, the N singleton clusters and the single N-element 
cluster cases.

3.3 Mode
The first method we propose is based on the empirical distribution 
of jump sizes. Specifically, we use the mode of the distribution		
D = {d

1, … , dN
},	denoted	 D

^,	 adjusted by the standard deviation		
(σD).	Our motivation is that the most common jump size likely does 
not represent a good cutoff point, and we should consider a higher 
jump threshold. As such, we take the number of clusters to be 

         ˆ ˆ ,M Dk D ασ= +          (6)

where α is a parameter that can be tuned. Naturally, tuning α 
would require human intervention or a training dataset. As such, we  
set it to 3 arbitrarily for a first look at the method’s viability.

3.4 Maximum difference
Our second method is even simpler, but is surprisingly absent 
from the literature. Inspired by the elbow method, we look at the 
maximum jump difference - as opposed to acceleration. Our 
number of clusters is then given by 

	 	 { }1
[2, ]

ˆ 2 arg max .D i i
i N

k N d d −
∈

= + − − 	 				(7)

This method shares the elbow method’s drawback that it can-
not solve the single cluster case (though it can handle singleton 
clusters), but we thought it prudent to examine as the literature 
seemed to focus on acceleration and not velocity.

4 Results
We present results of simulations on several numbers of true clus-
ters, drawn from a 2-dimensional normal distribution. Each cluster 
is comprised of 100 samples. We are most interested in tracking the 
success rate and the error size given an incorrect estimate. That is, 
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how often can we correctly estimate the number of clusters k and 
when we can’t, by how much are we off? Formally, this is given 
by 

	 										 { }
1

| | ( ), ˆ|with
=

= = =
n

X
j

T jS T Xn j k k 																		
(8)

and 
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4.1 Simulated data
The data used was drawn from a standard normal distribution, with 
cluster centers at (−3, −3), (3, 3), (−3, 3), (3, −3), shown in Figure 2. 
In the case of 1 cluster, the first is taken, for 2 clusters, the first two, 
and so on. We present the results of the methods on n = 200 simula-
tions below in Table 1–Table 3, with the best results in bold.

As shown, the best performing methods so far are the gap statistic 
and, surprisingly, the maximum difference.

The maximum difference method has a near perfect success rate 
on this simple example, besting the gap statistic in most areas. As 
noted though, it suffers from the same problem as the elbow method 
in that it cannot handle the single-cluster case. It is our recommen-
dation that if the reader suspects their data may be a single cluster, 
they should consider the gap statistic method. Note, however, that it 
is much more computationally intensive. As measured by Python’s 
timeit function, by a factor of ~ 50000.

4.2 Different cluster distributions
To get a better sense for the behavior of these methods, we look at 
clusters drawn from normal distributions with different parameters. 
For the clusters centered at (−3, −3), (3, 3), (−3, 3), (3, −3), we 
scale the standard deviations to use, respectively: 𝟙

2
, 𝟙

2
, 2𝟙

2
, 0.5𝟙

2
. 

Hopefully, these different distributions will stress the methods, 
highlight any weaknesses, and likely serve as a better proxy for 
real data. The results are detailed in Table 4–Table 6.

In this more complicated case, we see similar results. The 3-clus-
ter case (in this example) seems problematic for our method and 
the elbow method. The gap statistic once again performs well for 
the single-cluster scenario, but shows some weakness at 4 clusters. 
Overall, it seems that for k = 2, 3, 4 clusters, the maximum dif-
ference method at the very least is equal to the gap statistic, and 
improves on it in certain cases.

4.3 Different cluster separations
Returning to the equal-distribution 4-cluster problem, we now 
look at how the metrics evolve the distance between the clusters 
is increased. On the x-axis in Figure 3, a value of m corresponds to 
a cluster arrangement with coordinates: (−m/2, −m/2), (m/2, m/2), 
(−m/2, m/2), (m/2, −m/2). We expect all methods to perform better 
as the clusters drift further apart, since they are then more distinct.

This is indeed the case for the elbow, maximum difference and 
mode methods, which converge to a success rate of 1 and an error 
size of 0 (note some increased stability in the maximum difference). 
However, the gap statistic appears to do worse as the clusters 

Figure 2. Sample clusters of 100 points each.

Page 5 of 13

F1000Research 2016, 5(ISCB Comm J):2809 Last updated: 29 MAR 2017



separate - which could point to some underlying issues and should 
be explored more fully.

4.4 Biobase set
As mentioned in Section 1, our primary motivation for this problem 
was that of DNA microarray data and gene expression problems. 
It is also always prudent to test new methods using real data. As 
such (and to help with reproducibility), we test our methods on the 
ExpressionSet data from the R package Biobase (Bioconductor) 
v3.2,5. This is a sample of 26 different elements, with reconstruc-
tions presented in Figure 4 and Figure 5.

In this case, the maximum difference and elbow methods were in 
agreement and selected k̂

E
 = k̂

D
 = 3 clusters (with samples R and Z 

being singleton clusters). The mode, however, chose to add Z into 
the main cluster, producing k̂

M
 = 2 final clusters. O the other hand, 

the gp statistic selects only k̂
G
 = 1 cluster.

The author finds both the mode and gap results to be somewhat 
dubious - but they highlight an important issue. How can we know 
that a clustering is correct? Even if we examine the dendrogram as 
we did here, it is likely that in many examples the cutoff point could 
be debated. In this dataset, we find it more challenging to determine 
a correct clustering between 2 and 3 clusters - though 3 seems more 
natural to the author. This calls back to the previously mentioned 
issue with manual cutoff selection.

5 Data mixing
In an effort to improve our new methods, we look at data sampling. 
Inspired by cross-validation methods, we will randomly sample 

2

NM =  points L = 100 times. For each of the L samples j, we then 
run our method and get a ( )ˆ j

Xk . We then set our estimated number 
of clusters to be 

	 	
{ }( )* mode

1

ˆ ˆ=
=

j
L

X X j
k k

	 					 										
(10)

While this requires running our method L times, for L = 100, it is 
still roughly 500 times faster that the gap statistic. Hopefully, this 
will improve our methods by averaging out any outlying errors or 
points in our data.

5.1 Results
We present results on the same k = 2, 3, 4 cluster construction 
detailed above, each with the same distribution (Table 7–Table 9). 

Table 1. Average cluster numbers 
over n = 200 runs.

k ˆ
Ek ˆ

Gk ˆ
Dk ˆ

Mk

1 3.720 1.110 2.965 4.505

2 2.000 2.000 2.000 2.645

3 3.050 3.050 3.015 4.725

4 3.915 4.060 4.010 6.280

Table 2. Success rate over n = 200 
runs.

k SE SG SD SM

1 0.000 0.910 0.000 0.000

2 1.000 1.000 1.000 0.465

3 0.955 0.960 0.985 0.100

4 0.920 0.940 0.990 0.055

Table 3. Average error size (when 
wrong) over n = 200 runs.

k EE EG ED EM

1 2.720 1.222 1.965 3.505

2 0.000 0.000 0.000 1.206

3 1.111 1.250 1.000 1.917

4 1.688 1.000 1.000 2.413

Table 4. Average cluster numbers 
over n = 200 runs.

k ˆ
Ek ˆ

Gk ˆ
Dk ˆ

Mk

1 3.710 1.100 3.035 4.450

2 2.000 2.000 2.000 2.625

3 3.170 3.000 3.060 6.055

4 3.940 4.140 4.005 5.780

Table 5. Success rate over n = 200 
runs.

k SE SG SD SM

1 0.000 0.910 0.000 0.000

2 1.000 1.000 1.000 0.475

3 0.840 1.000 0.920 0.005

4 0.955 0.880 0.995 0.085

Table 6. Average error size (when 
wrong) over n = 200 runs.

k EE EG ED EM

1 2.710 1.111 2.035 3.450

2 0.000 0.000 0.000 1.190

3 1.063 0.000 1.000 3.070

4 1.778 1.167 1.000 1.945
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Figure 3. Tracking for varying distances.

Figure 4. Clustering of the ExpressionSet.
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Figure 5. Clustering of the ExpressionSet.

Table 7. Average cluster numbers 
over n = 200 runs.

k *ˆ
Ek ˆ

Gk *ˆ
Dk *ˆ

Mk

2 2.000 2.000 2.000 2.015

3 3.000 3.050 3.000 3.080

4 4.000 4.060 4.000 4.065

Table 8. Success rate over n = 200 
runs.

k *
ES SG

*
DS *

MS

2 1.000 1.000 1.000 0.985

3 1.000 0.960 1.000 0.920

4 1.000 0.940 1.000 0.935

Table 9. Average error size (when 
wrong) over n = 200 runs.

k *
EE EG

*
DE *

ME

2 0.000 0.000 0.000 1.000

3 0.000 1.250 0.000 1.000

4 0.000 1.000 0.000 1.000

Due to computational times, we did not perform data mixing 
on the gap statistic. Though given that these methods are much  
faster even with mixing, we believe that comparing them remains 
a fruitful exercise. We provide the gap statistic results from  
Table 1–Table 3 here for convenience.

As shown above, both the elbow method and the maximum  
difference seem to perfectly capture the simulated data. Perhaps 
even more surprising, the mode method now has results that 
are comparable to the gap statistic and not far behind the other  
methods.

5.2 ExpressionSet with mixing
We now return to the ExpressionSet to see if we can come to a  
consensus on its clustering. We run the same 

2

NM =  and L = 100  
mixing as for the simulated data to obtain Figure 6.

With mixing, there are slight differences in clustering. The elbow 
and maximum difference methods now agree on 2 clusters instead 
of 3. The mode method agrees with the gap statistic and sets the 
number of clusters to 1. Again, we find it difficult to argue in 
favor of 1 cluster, but maintain that 2 or 3 clusters seem viable - 
with a preference for 3. It is possible we somehow over-mixed 
the data when working with such a small sample.

5.3 LOOCV
Our data mixing procedure resembles leave N − M out cross 
validation. In that spirit, let’s examine a method resembling leave 
one out cross validation (note that computation times will now 
increase with data size). In our case, this means taking M = 1 and 
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Figure 6. Clustering of the ExpressionSet with mixing.

removing each data point once (in a sense, L = N). For each “sam-
pled” set (of N − 1 points), we compute the number of clusters and 
again take the mode of the L sample cluster numbers as our esti-
mate. With this we obtain Table 10–Table 12 and Figure 7.

While the maximum difference method seems robust in the face 
of different sampling, it seems that this exercise has revealed 
some instability in the mode method, which has reverted back 
to a lackluster performance. To a much lesser extent, the elbow 
method has some trouble as well. It seems more likely that 
the choice of sampling parameters could be the cause of the 
clustering in the Biobase data in Figure 6. More generally, we 
should look into determining optimal mixing parameters M and L 
and/or their impact on these methods.

Table 10. Average cluster numbers 
over n = 200 runs.

k *ˆ
Ek ˆ

Gk *ˆ
Dk *ˆ

Mk

2 2.000 2.000 2.000 2.660

3 3.040 3.050 3.000 4.630

4 3.900 4.060 4.000 6.180

Table 11. Success rate over n = 200 
runs.

k *
ES SG

*
DS *

MS

2 1.000 1.000 1.000 0.465

3 0.960 0.960 1.000 0.135

4 0.940 0.940 1.000 0.055

Table 12. Average error size (when 
wrong) over n = 200 runs.

k *
EE      EG

*
DE *

ME

2 0.000 0.000 0.000 1.234

3 1.000 1.250 0.000 1.884

4 2.000 1.000 0.000 2.307

This mixing method does appear to perform better for the  
ExpressionSet than the previous choice of mixing parameters, 
which seems to confirm our hypothesis that there is perhaps an 
oversampling effect, or something along those lines which must be 
explored more fully.
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6 Conclusion
We have developed two new empirical methods for clustering  
data in a hierarchical framework. While our methods are 
substantially faster than the existing gap statistic, they do not 
handle the single-cluster case. In other cases, our maximum 
difference method is at least comparable to the gap statistic and 
outperforms the elbow method.

In addition, the use of the data mixing procedure presented  
here can greatly improve performance (especially for the mode 
method), leading to the maximum difference method outperform-
ing the other 3. Lastly, these methods can be implemented in a  
few lines of code and should allow researchers to quickly utilize 
them at a low computational cost.

In the future we will study the possibility of finding optimal  
mixing numbers M and L and the impact of the choice of these 
parameters of our results. Hopefully, they are related to the  
instability detected in the mode method when using M = 1 in our 
mixing procedure.

Data availability
We provide base code to generate the simulated data used in this 
paper. The code is written in Python 2.7.

from scipy.cluster.hierarchy import linkage
import numpy as np

p = 2 #dimension of the data
n = 100 #number of samples in each cluster
k = 4 #number of clusters

a = np.random.multivariate_normal(\\
    [-3 for _ in range(0,p)],\\
    np.identity(p), size=[n,])
b = np.random.multivariate_normal(\\
    [3 for _ in range(0,p)],\\
    np.identity(p), size=[n,])

#c can be changed to use 2*np.identity(p)
c = np.random.multivariate_normal(\\
    [-3,3], np.identity(p), size=[n,])

#d can be changed to use 0.5*np.identity(p)
d = np.random.multivariate_normal(\\
    [3,-3], np.identity(p), size=[n,])

#X contains the necessary data
X = np.concatenate((a, b, c, d),)

#for reference as to data format usage
Z = linkage(X,’average’)

Figure 7. Clustering of the ExpressionSet with “LOOCV”.
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In order to access the ExpressionSet data, we use the following R 
code.

library(Biobase)
getClass("ExpressionSet")

#dat contains the necessary data
dat = t(exprs(sample.ExpressionSet))
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